0

Full Content is available to subscribers

Subscribe/Learn More  >

Plant-Limited Co-Design of an Energy-Efficient Counterbalanced Robotic Manipulator

[+] Author Affiliations
James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2012-71108, pp. 847-856; 10 pages
doi:10.1115/DETC2012-71108
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 38th Design Automation Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4502-8
  • Copyright © 2012 by ASME

abstract

Modifying the design of an existing system to meet the needs of a new task is a common activity in mechatronic system development. Often engineers seek to meet requirements for the new task via control design changes alone, but in many cases new requirements are impossible to meet using control design only; physical system design modifications must be considered. Plant-Limited Co-Design (PLCD) is a design methodology for meeting new requirements at minimum cost through limited physical system (plant) design changes in concert with control system redesign. The most influential plant changes are identified to narrow the set of candidate plant changes. PLCD provides quantitative evidence to support strategic plant design modification decisions, including tradeoff analyses of redesign cost and requirement violation. In this article the design of a counterbalanced robotic manipulator is used to illustrate successful PLCD application. A baseline system design is obtained that exploits synergy between manipulator passive dynamics and control to minimize energy consumption for a specific pick-and-place task. The baseline design cannot meet requirements for a second pick-and-place task through control design changes alone. A limited set of plant design changes is identified using sensitivity analysis, and the PLCD result meets the new requirements at a cost significantly less than complete system redesign.

Copyright © 2012 by ASME
Topics: Design , Manipulators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In