0

Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Vision-Based Full-Field Displacement and Strain Measurement via Uncertainty Propagation

[+] Author Affiliations
Tomonari Furukawa

Virginia Tech, Danville, VA

Yoshitaka Wada

Kindai University, Higashiosaka, Osaka, Japan

John G. Michopoulos

Naval Research Laboratory, Washington, DC

Athanasios Iliopoulos

George Mason University, Fairfax, VANaval Research Laboratory, Washington, DC

Paper No. DETC2012-70969, pp. 981-987; 7 pages
doi:10.1115/DETC2012-70969
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME

abstract

This paper presents formulations that enable the vision-based measurement of displacement and strain fields extensively in a probabilistic manner. The proposed formulations are built on the dot centroid tracking (DCT) method by digital cameras, which measures the darkness of each pixel in gray scale, identify dots marked on a specimen, derives dot centroids using pixel darkness information and derives displacement and strain fields by tracking the centroids and interpolating the nodal displacements and strains. Under the Gaussian assumption, the proposed formulations analytically propagate the standard deviation of uncertainty in darkness measurement and estimate that in the displacement and strain field measurement. As the first step, the formulations were completed for continuous field measurement with triangular elements. Most advantageously, the proposed formulations allow discussion on measurement error bounds, which also enables the quantitative comparison of the DCT method to the other measurement techniques. For numerical validation, standard deviations of nodal displacements and strains estimated from the known darkness uncertainty were compared to those derived from large samples created with the same darkness uncertainty. The results show the validity of the proposed formulations and their potential in measurement with reliability.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In