Full Content is available to subscribers

Subscribe/Learn More  >

Development of the Next-Generation Computational Fracture Mechanics Simulator on the Earth Simulator 2

[+] Author Affiliations
Kaworu Yodo

Insight, Inc., Tokyo, Japan

Hiroshi Kawai

The University of Tokyo, Tokyo, Japan

Hiroshi Okada

Tokyo University of Science, Noda, Chiba, Japan

Masao Ogino

Nagoya University, Nagoya, Aichi, Japan

Ryuji Shioya

Toyo University, Kawagoe, Saitama, Japan

Paper No. DETC2012-70909, pp. 973-979; 7 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME


Fracture mechanics analysis using the finite element method has been one of the key methodologies to evaluate structural integrity for aging infrastructures such as aircraft, ship, power plants, etc. However, three-dimensional crack analyses for structures with highly complex three-dimensional shapes have not widely been used, because of many technical difficulties such as the lack of enough computational power.

The authors have been developing a fracture mechanics analysis system that can deal with arbitrary shaped cracks in three-dimensional structures. The system consists of mesh generation software, a finite element analysis program and a fracture mechanics module. In our system, a Virtual Crack Closure-Integral Method (VCCM) for the quadratic tetrahedral finite elements is adopted to evaluate the stress intensity factors. This system can perform the three-dimensional fracture analyses. Fatigue and SCC crack propagation analyses with more than one cracks of arbitrary complicated shapes and orientations. The rate and direction of crack propagation are predicted by using appropriate formulae based on the stress intensity factors.

When the fracture mechanics analysis system is applied to the complex shaped aging structures with the cracks which are modeled explicitly, the size of finite element analysis tends to be very large. Therefore, a large scale parallel structural analysis code is required. We also have been developing an open-source CAE system, ADVENTURE. It is based on the hierarchical domain decomposition method (HDDM) with the balancing domain decomposition (BDD) pre-conditioner. A general-purpose parallel structural analysis solver, ADVENTURE_Solid is one of the solver modules of the ADVENTURE system.

In this paper, we combined VCCM for the tetrahedral finite element with ADVENTURE system and large-scale fracture analyses are fully automated. They are performed using the massively parallel super computer ES2 (Earth Simulator 2) which is owned and run by JAMSTEC (Japan Agency for Marine-Earth Science and Technology).

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In