0

Full Content is available to subscribers

Subscribe/Learn More  >

A GPU Parallelization of the Absolute Nodal Coordinate Formulation for Applications in Flexible Multibody Dynamics

[+] Author Affiliations
Daniel Melanz, Naresh Khude, Dan Negrut

University of Wisconsin-Madison, Madison, WI

Paramsothy Jayakumar, Mike Leatherwood

US Army Tank Automotive Research, Development, and Engineering Center, Warren, MI

Paper No. DETC2012-71352, pp. 839-846; 8 pages
doi:10.1115/DETC2012-71352
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME

abstract

The Absolute Nodal Coordinate Formulation (ANCF) has been widely used to carry out the dynamics analysis of flexible bodies that undergo large rotation and large deformation. This formulation is consistent with the nonlinear theory of continuum mechanics and is computationally more efficient compared to other nonlinear finite element formulations. Kinematic constraints that represent mechanical joints and specified motion trajectories can be introduced to make complex flexible mechanisms. As the complexity of a mechanism increases, the system of differential algebraic equations becomes very large and results in a computational bottleneck. This contribution helps alleviate this bottleneck using three tools: (1) an implicit time-stepping algorithm, (2) fine-grained parallel processing on the Graphics Processing Unit (GPU), and (3) enabling parallelism through a novel Constraint-Based Mesh (CBM) approach. The combination of these tools results in a fast solution process that scales linearly for large numbers of elements, allowing meaningful engineering problems to be solved.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In