0

Full Content is available to subscribers

Subscribe/Learn More  >

Visual Imagery Classification Using Shapelets of EEG Signals

[+] Author Affiliations
Stewart Contreras, V. Sundararajan

University of California, Riverside, Riverside, CA

Paper No. DETC2012-71291, pp. 709-714; 6 pages
doi:10.1115/DETC2012-71291
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME

abstract

The goal of this paper is to reconstruct three primitive shapes — rectangular cube, cone and cylinder — by analyzing electrical signals which are emitted by the brain. Three participants are asked to visualize these shapes. During visualization, a 14-channel neuroheadset is used to record electroencephalogram (EEG) signals along the scalp. The EEG recordings are then averaged to increase the signal to noise ratio which is referred to as an event related potential (ERP). Every possible subsequence of each ERP signal is analyzed in an attempt to determine a time series which is maximally representative of a particular class. These time series are referred to as shapelets and form the basis of our classification scheme. After implementing a voting technique for classification, an average classification accuracy of 60% is achieved. Compared to naive classification rate of 33%, we determine that the shapelets are in fact capturing features that are unique in the ERP representation of a unique class.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In