0

Full Content is available to subscribers

Subscribe/Learn More  >

The Generation of Machining Process Plans Using a Haptic Virtual Reality System

[+] Author Affiliations
C. A. Fletcher, J. M. Ritchie, T. Lim

Heriot Watt University, Edinburgh, UK

Paper No. DETC2012-70245, pp. 231-236; 6 pages
doi:10.1115/DETC2012-70245
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME

abstract

Computer Aided Process Planning (CAPP) links the design and manufacture of a machined product defining how the product itself will be manufactured. Decisions made during this phase can have a significant impact on product cost, quality and build time; therefore, it is important that process planners have intuitive tools to aid them in effectively creating process plans. However, in spite of being a strong research area, the actual application of CAPP systems in industry is limited and new modern 3D digital tools in this area have not been researched to any real degree.

Traditional process planning is carried out either manually or via a CAPP interface and, from this activity, a set of instructions are generated for the shop floor. However, these CAPP processes can be time consuming and subject to inconsistencies. Current research seeks to automate the generation of work instructions by using previous designs and/or artificial intelligence. However, due to the complexity of manufacturing a wide range of products, the limited range of tools available and differing skills of the workforce, it is difficult to reach a generic solution for practical application.

The novel pilot study given in this paper presents one of the first pieces of research comparing and contrasting a traditional manual approach to machined part process planning with an alternative haptic virtual environment. Within this, an operator can simulate the machining of a simple part using a virtual drilling and milling process via a haptic routing interface. All of the operator input is logged in the background with the system automatically generating shop floor instructions from this log file.

Findings show that users found the virtual system to be more intuitive and required less mental workload than traditional manual methods. Also their perceptions for the future were that they would need less support for learning and would progress to final planning solutions more quickly.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In