Full Content is available to subscribers

Subscribe/Learn More  >

3D Object Representation for Physics Simulation Engines and its Effect on Virtual Assembly Tasks

[+] Author Affiliations
Germanico Gonzalez, Hugo I. Medellin

Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México

Theodore Lim, James M. Ritchie, Raymond C. W. Sung

Heriot-Watt University, Edinburgh, Scotland, UK

Paper No. DETC2012-71120, pp. 1449-1459; 11 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME


Physical based modelling (PBM) uses physics simulation engines (PSE) to provide the dynamic behaviour and collision detection of virtual objects in virtual environments emulating the real world. There exists a variety of PSEs, each one with pros and cons according to the application in which they are employed. Each physics engine uses its proprietary collision detection algorithm. Collision detection is a key aspect of assembly tasks and its performance is dependent on the way virtual objects are represented. In general, objects can be divided into two groups: convex and concave, the latter being the most common and challenging for collision detection algorithms. This study reports on three different methods to represent concave objects. GIMPACT, Hierarchical Approximate Convex Decomposition (HACD) and Approximate Convex Decomposition (ACD), which are evaluated and compared based on their collision detection performances. An exact convex decomposition algorithm, named as ConvexFT, is also proposed and analyzed in this paper. Finally the performance of the three existing methods and the ConvexFT proposed approach are compared in order to assess which model representation algorithm is best suited for haptic-virtual assembly tasks.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In