Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Printed Circuit Boards Using Isotropic Elastoplastic Model and Application to Drop Simulation for Mobile Phone

[+] Author Affiliations
Hojin Jeon, Myunghyun Park, Hyongwon Seo, Myunghan Kim, Yonghee Lee

LG Electronics, Seoul, Republic of Korea

Paper No. DETC2012-70781, pp. 125-130; 6 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME


Flexural behavior of printed circuit boards (PCB) is well known for the major failure mechanism under board level or product level mobile phone drop tests. This behavior induces high peeling stress between PCB and IC package. This stress causes failure including both solder joint crack and pad cratering, which leads to malfunction such as phone dead or power off. Therefore, for a more reliable mobile phone design, it is important to accurately predict behavior of the PCB. In the past, isotropic or orthogonal linear elastic model have been used for simulating PCB in finite element analysis. Also, since PCB consists of multiple layers with woven glass fiber epoxy resin composite (FR-4) and copper foils, a multilayered PCB model was developed in order to consider material properties that change along the different plies. In this paper, the isotropic elastoplastic model was employed in order to efficiently predict behavior of PCB. Tensile and flexural test of PCB were conducted initially to evaluate mechanical characteristics and obtain representative material properties. Then, simulation of flexural test was performed to develop the finite element modeling. Finally, a drop test of mobile phone adopted with PCB bare board, which did not include IC packages, was examined. Also, the strain gage was used for measuring strain of PCB. This result was compared with drop simulation results of mobile phone, which used finite element modeling suggested. In conclusion, from an industry standpoint, finite element modeling of PCB using isotropic elasoplastic model was useful and efficient.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In