Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Certificate of Correctness for Cyber Physical Systems

[+] Author Affiliations
Alex Van der Velden, Jeff Haan, David Fox

Dassault Systèmes SIMULIA, Providence, RI

Patrick Koch, Srikanth Devanathan

Dassault Systèmes SIMULIA, Cary, NC

Dave Naehring

Dassault Systèmes SIMULIA, Houston, TX

Paper No. DETC2012-70135, pp. 1043-1054; 12 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4501-1
  • Copyright © 2012 by ASME


Cyber Physical Systems couple computational and physical elements, therefore the behavior of geometry (deformations, kinematics), physics and controls needs to be certified using many different tools over a very high dimensional space. Because of the near infinite number of ways such a system can fail meeting its requirements, we developed a Probabilistic Certificate of Correctness (PCC) metric which quantifies the probability of satisfying requirements with consistent statistical confidence.

PCC can be implemented as a scalable engineering practice for certifying complex system behavior at every milestone in the product lifecycle. This is achieved by: creating virtual prototypes at different levels of model abstraction and fidelity; capturing and integrating these models into a simulation process flow; verifying requirements in parallel by deploying virtual prototypes across large organizations; reducing certification time proportional to additional computational resources and trading off sizing, modeling accuracy, technology and manufacturing tolerances against requirements and cost.

This process is an improvement over the V-cycle because verification and validation happens at every stage of the system engineering process thus reducing rework in the more expensive implementation and physical certification phase. The PCC process is illustrated using the example of “Safe Range” certification for an UAV with active flutter control.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In