Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Aerodynamic Modeling and Flutter Analysis of Long-Span Suspension Bridges

[+] Author Affiliations
Andrea Arena, Walter Lacarbonara

Sapienza University of Rome, Rome, Italy

Pier Marzocca

Clarkson University, Potsdam, NY

Paper No. DETC2012-70289, pp. 15-21; 7 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 24th Conference on Mechanical Vibration and Noise, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4500-4
  • Copyright © 2012 by ASME


A parametric one-dimensional model of suspension bridges is employed to investigate their static and dynamic aeroelastic behavior in response to a gust load and at the onset of flutter. The equilibrium equations are obtained via a direct total Lagrangian formulation where the kinematics for the deck, assumed to be linear, feature the vertical and the chord-wise displacements of the deck mean axis and the torsional rotations of the deck cross sections, while preserving their shape during rotation. The cables elasto-geometric stiffness contribution is obtained by condensing the equilibrium in the longitudinal direction assuming small horizontal displacements and neglecting the cable kinematics along the bridge chord-wise direction. The equations of motion are linearized about the prestressed static aeroelastic configuration and are obtained via an updated Lagrangian formulation.

The equations of motion governing the structural dynamics of the bridge are coupled with the incompressible unsteady aero-dynamic model obtained by a set of reduced-order indicial functions developed for the cross section of a suspension bridge, here represented by a rectangular cross-section. The space dependence of the governing equations is treated using the Galerkin approach borrowing as set of trial functions, the eigenbasis of the modal space. The time integration is subsequently performed by using a numerical scheme that includes the modal reduced dynamic aeroelastic Ordinary Differential Equations (ODEs) and the added aerodynamic states also represented in ODE form, the latter being associated with the lag-state formulation pertinent to the unsteady wind-induced loads.

The model is suitable to analyze the effect of a time and space non uniform gust load distributed on the bridge span. The obtained aeroelastic system is also suitable to study the onset of flutter and to investigate the sensitivity of the flutter condition on geometrical and aerodynamic parameters. The flutter instability is evaluated using appropriate frequency and time domain characteristics. The parametric continuum model is exploited to perform dynamic aeroelastic flutter analysis and gust response of the Runyang Suspension Bridge over the Yangtze river in China.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In