0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Physical Model Tests With a Time Domain Simulation Model of a Wave Energy Converter

[+] Author Affiliations
Ryan S. Nicoll, André R. Roy

Dynamic Systems Analysis, Ltd., Victoria, BC, Canada

Charles F. Wood

Seawood Designs Inc., Cobble Hill, BC, Canada

Paper No. OMAE2012-83699, pp. 507-516; 10 pages
doi:10.1115/OMAE2012-83699
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: Ocean Space Utilization; Ocean Renewable Energy
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4494-6
  • Copyright © 2012 by ASME

abstract

Development of wave energy conversion systems may yield many key benefits for society such as the production of electrical power or fresh water for remote communities. However, complex ocean dynamics make it difficult for technology developers to not only address the stability and survivability of their systems, but also to establish energy conversion rates that are fundamental to proving economic viability. Building physical prototypes presents many challenges in terms of cost, accessible facilities, and time requirements. The use of accurate numerical modelling and computer simulation can help guide design and significantly reduce the number of physical prototype tests required and as a result play a primary role in the development of wave energy conversion systems that have to operate in challenging marine environments.

SurfPower is an ocean wave energy converter (WEC) that converts wave motion into useful energy through surge and heave motion of a point absorber. The system pumps seawater into a high pressure hydraulic network that generates electricity via a turbine or freshwater via desalination at a facility onshore. The system is nonlinear due to the significant change in draft and mooring reaction load through the energy capture cycle of the device. This makes the use of nonlinear time domain simulation ideal for analysis and design of the system. Furthermore, utilizing a simplified nonlinear hydrodynamic model available in the time domain results in a practical early-stage design tool for system refinement.

The focus of this work is to compare the results of scale model testing completed at the Institute for Ocean Technology in St. John’s, Newfoundland, with results produced from an equivalent system simulated in the time domain simulation software ProteusDS. The results give an assessment of the range of error that can be used to assess other experiments of the SurfPower WEC at full scale.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In