0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Studies of a Floating Cylindrical OWC WEC

[+] Author Affiliations
Wanan Sheng, Brian Flannery, Anthony Lewis, Raymond Alcorn

University College Cork, Cork, Ireland

Paper No. OMAE2012-83040, pp. 169-178; 10 pages
doi:10.1115/OMAE2012-83040
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: Ocean Space Utilization; Ocean Renewable Energy
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4494-6
  • Copyright © 2012 by ASME

abstract

Oscillating water column (OWC) wave energy converters (WECs) are a popular type of wave energy devices, due to their advantages over many other WECs. For example, OWC WECs normally have no moving components in sea water, and have a small torque and a high rotational speed for a certain power take-off. Practically, some foundation-type pioneer plants of OWC WECs have been very successful in generating electricity to grids continuously. In order to obtain higher yields of wave energy production, it is proposed to move the OWC WECs to open and deep water regions, and for the purposes of economics and reliability, the OWC WECs are designed to be floating devices, with a potential of utilizing the device motions to improve wave energy conversion capacity. To further understand the OWC WEC performances in waves, a floating cylindrical OWC has been designed and tested in an ocean wave tank. In the model test, five different size orifices are designed to represent different damping levels of the air flow. In the experimental study, a systematic series of tests in both regular and irregular waves has been conducted to help understand the hydrodynamics and aerodynamics of the generic OWC device.

In the model test, the interior water surface motion and the pressure in the air chamber are measured and based on them the primary power take-off by the device can be calculated. Alternatively, the power take-off can be calculated by the pressure measurement only or by the interior water surface measurement only due to the unique relation of the pressure drop and the airflow passing through the orifices. In addition, in the experiment, the motions of the floating structure have also been measured, from which it is possible to correlate the motions and the wave energy extraction.

As expected, the orifices exhibit a quadratic non-linear relation between pressure and the flowrate. Though simple, the orifice power take-off system may exhibit a similar flow feature to that of an impulse turbine, thus an appropriate model to the impulse turbine.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In