Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Estimation in Deepwater Risers Based on Wavelets and Second Order Blind Identification

[+] Author Affiliations
Chaojun Huang, Satish Nagarajaiah

Rice University, Houston, TX

Nadathur Varadarajan

McDermott Engineering, Houston, TX

Paper No. OMAE2012-83980, pp. 829-838; 10 pages
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4490-8
  • Copyright © 2012 by ASME


The safety of deepwater risers is essential for sustainable operation of offshore platforms. The structural health monitoring (SHM) system for deepwater risers is important to detect damage and perform repairs before failure occurs. Two main sources of damage are fatigue and corrosion. Failure of the riser would not only be an economical and environmental disaster, but also have far reaching consequences affecting communities. Combining global and local monitoring can greatly increase the accuracy of damage detection and fatigue estimation. Local inspection using robotic Magnetic Flux leakage (MFL) sensors is efficient and provides high resolution estimate of wall thickness changes due to corrosion or damage, while proposed vibration-based system identification can estimate global damage locations and fatigue life.

A new SHM system for deepwater risers was recently developed to monitor damage to the risers with both global and local monitoring methods proposed in this paper. The global monitoring is achieved by wavelet transform (WT) and second order blind identification (SOBI) method, from which, the likely location of fatigue damage is estimated. Once the location of the damage is identified by the proposed Wavelets/SOBI global identification method, local monitoring is performed using a robotic crawler with MFL sensors to further estimate the extent of the damage. Local monitoring with MFL sensors is verified by experimental results. Wavelets/SOBI global identification method is verified using Gulfstream test data.

Possible applications for the proposed SHM systems are for deepwater risers and deepwater platforms. A robotic MFL crawler can be used for in-line inspection for various pipelines. The proposed damage detection method and fatigue estimation can be adapted to other offshore structures, both fixed and floating. The proposed global method can also be used to analyze Tensioned Leg Platforms (TLP). To demonstrate the applicability of the proposed Wavelets/SOBI method to risers and floating platforms, verification using Gulfstream riser field data and TLP model data is presented in the paper.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In