Full Content is available to subscribers

Subscribe/Learn More  >

New Advances in Flexible Riser Monitoring Techniques Using Optical Fiber Sensors

[+] Author Affiliations
Sérgio R. K. Morikawa, Claudio S. Camerini

Petrobras, Rio de Janeiro, RJ, Brazil

Arthur M. B. Braga, Carla C. Kato, Roberth A. Llerena, Murilo G. Camerini, Tiago B. Simões

Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil

Paper No. OMAE2012-83952, pp. 793-798; 6 pages
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4490-8
  • Copyright © 2012 by ASME


Petrobras oil and gas production in the deep and ultra deepwater fields in Campos Basin and other provinces off the Brazilian coast heavily relies on flexible pipes. Maximizing the availability and reliability of an extensive offshore pipeline network poses innumerous challenges to the Company, which is steadily moving towards a condition based approach to maintenance of their flexible risers. In this context, Petrobras, in cooperation with its academic partners, has launched a comprehensive R&D program named MONFLEX, focusing on novel techniques for structural monitoring of flexible risers.

Years of field experience have demonstrated that one of the most frequent failure modes of flexible pipes is the sequential rupture of wires in their tensile armor layers [1]. The MONFLEX Program has explored a range of different technologies in order to timely detect and monitor the growth of this class of progressive structural damage. Some of the proposed approaches have relied on video cameras pointed towards fixedly mounted targets on the riser outer sheath, vibration and acoustic methods, these in a wide frequency range, and techniques based on fiber optic strain sensors. All three have been experimentally deployed in the field and are currently being evaluated. Among those, fiber optic monitoring is the one that has shown the better promise of becoming the chosen method for detecting wire ruptures in the riser’s armor layers.

The fiber optic based monitoring system developed in the MONFLEX R&D Program has been named MODA, which, in Portuguese, stands for Direct Wire Optical Monitoring. The MODA system consists in instrumenting all the wires of the riser’s external tensile armor layer with fiber Bragg grating strain sensors. In flexible risers already in operation, a window in the polymeric outer sheath of the pipe is temporarily opened in order to allow the sensors installation, and then repaired with a protective, anticorrosive layer. Even though in MODA the strain sensors are installed in the external armor layer, full scale laboratory tests have demonstrated that the algorithm employed to treat and analyze the real time data provided by the system is capable of instantaneously detecting ruptures of wires either in the external or internal layers of the tensile armor. The proposed contribution will report the later results of extensive laboratory tests and field trials performed with the MODA system.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In