0

Full Content is available to subscribers

Subscribe/Learn More  >

Rock Berm Design for Pipeline Stability

[+] Author Affiliations
David J. Chamizo, Dean R. Campbell, Eric P. Jas, Jay R. Ryan

Atteris Pty. Ltd., Perth, WA, Australia

Paper No. OMAE2012-83551, pp. 459-467; 9 pages
doi:10.1115/OMAE2012-83551
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4490-8
  • Copyright © 2012 by ASME

abstract

Stabilizing large diameter natural gas pipelines on the seabed against extreme hydrodynamic loading conditions has proven to be challenging in the northwest of Australia. Tropical storms, which affect the area annually between November and April, can generate wave heights exceeding 30 m and storm steady state currents of 2 m/s or more. Consequently, in shallow water depths, typically less than 40–60 m, subsea pipelines can be subjected to very high hydrodynamic loads, potentially causing significant lateral movement. To mitigate the risk of the pipeline suffering mechanical damage due to excessive lateral movement, quarried and graded rock is often dumped over the pipeline as a secondary stabilization solution.

In order to satisfy functional requirements, the rock berm must comprise of a sufficiently large rock grading size and berm volume to withstand the design hydrodynamic loading such that the pipeline cannot break out of the berm. The design of rock berms for pipeline secondary stabilization has traditionally followed a deterministic approach that uses empirical equations for preliminary rock sizing, followed by small-scale physical modeling for design verification and optimization. Whilst the traditional approach can be effective in producing a robust rock berm design, opportunities for further optimization are inhibited by a lack of available data and an imperfect understanding of the failure mechanisms.

This paper presents an overview of an improved approach for rock berm design optimization. A general overview of rock berms, the design principles, benefits and risks are also presented.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In