Full Content is available to subscribers

Subscribe/Learn More  >

Aluminum Catenary Production Riser: Design, Testing Results, Ways to Improvement

[+] Author Affiliations
Vadim Tikhonov, Mikhail Gelfgat, Rudolf Alikin

Aquatic Co., A Weatherford Co., Moscow, Russia

Valery Chizhikov

Aquatic Co., A Weatherford Co., St.-Petersburg, Russia

Valery Shaposhnikov

Krylov’s Institute, St.-Petersburg, Russia

Paulo Dias

CENPES, Petrobras, Rio de Janeiro, RJ, Brazil

Paper No. OMAE2012-83001, pp. 1-8; 8 pages
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4490-8
  • Copyright © 2012 by ASME


One of the widely used systems for offshore oil production in water depths up to 500–2500 meters is a steel catenary riser (SCR). Requirements for long-term corrosion resistance of SCR are very stringent, that obliges to manufacture it from expensive steels. Still, the increased water depth leads to increased riser tension, grown pressure, aggravated buckling and oscillation problems. Among alternative materials to manufacture catenary risers, i.e., steel, titanium and aluminum alloys, the aluminum is the best from the “Strength/Weight/Cost” aspects with its high corrosion strength.

Design of an aluminum catenary production riser (ACPR) was developed in Russia; and comprehensive tests were performed on mechanical characteristics and corrosion resistance properties of ACPR tubes and their connections. Two possible connections of riser sections were considered, i.e., welded and threaded. Strength analysis of threaded connection was performed by FEM.

Mechanical testing included: testing of small samples of pipe material and welded connection cut out of riser section, testing of full-scale specimens of connection prototypes, and measurement of residual stresses. Structural and corrosion tests of samples consist of investigation of standard metallographic characteristics of pipe material and welded connection, and assessment of effects of different types of corrosion in seawater and oil fluid. The results of performed work have led to the conclusion that welded connection is most prospective for ACPR manufacturing. At the same time, the testing revealed certain improvements need to be done in the course of further work on this project.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In