0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Creep Behaviour of the Polymer Barrier Layer in Unbonded Flexible Pipes Under Different Fluid Temperatures

[+] Author Affiliations
Yijun Shen, Jian Zhao, Terry Sheldrake

Wellstream Flexibles - GE Oil & Gas, Newcastle Upon Tyne, United Kingdom

Zhimin Tan

Wellstream Flexibles - GE Oil & Gas, Houston, TX

Paper No. OMAE2012-83164, pp. 153-158; 6 pages
doi:10.1115/OMAE2012-83164
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4490-8
  • Copyright © 2012 by ASME

abstract

This paper discusses the influence of different fluid temperatures on the creep behaviour of the polymer barrier inside unbonded flexible pipes. The creep behaviour of the polymer material is generally time-dependent and associated with larger, nonlinear deformation. Excessive creep deformation may lead to structural failure, due to the over-reduction of the barrier layer thickness, and is therefore an important design consideration in ensuring the structural integrity of this layer.

Creep behaviour in polymer material is complex, as it is governed by a number of variables, such as the stress/strain state, temperature, and pressure for example. This paper deals with the influence of different fluid temperatures on the creep behaviour of the polymer barrier layer under pipe design pressures, particularly in high temperature fluid transportation pipelines for deep or ultra-deep sea applications.

The analysis model was established using commercial finite element software ANSYS, where an implicit time hardening creep model, based on the Maxwell viscoelastic model, was selected to represent the creep behaviour of the polymer materials. The coefficients of the implemented polymer material gap span creep model are calibrated to represent the worst case of the small-scale sample gap span creep tests performed in-house.

A comparison is made between the simulation results of the calibrated gap span creep model and the corresponding small-scale creep test measurements. The experimental test results and the finite element modelling results show good correlation. This demonstrates that the creep model predictions are conservative for the polymer material of the barrier layer inside an unbonded flexible pipe.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In