0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on the Impact Loads Acting on a Horizontal Rigid Cylinder During Vertical Water Entry

[+] Author Affiliations
Diederik Van Nuffel, Sridhar Vepa, Ives De Baere, Joris Degrieck, Julien De Rouck, Wim Van Paepegem

Ghent University, Ghent, East-Flanders, Belgium

Paper No. OMAE2012-83084, pp. 67-76; 10 pages
doi:10.1115/OMAE2012-83084
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4488-5
  • Copyright © 2012 by ASME

abstract

This paper experimentally studies the local and global loads acting on a rigid cylinder subjected to water wave slamming. Local loads are hereby expressed in terms of pressure on the cylindrical surface while global loads are investigated in terms of force acting on the complete cylinder. Global impact loads may be better suited for use in design processes. An experimental setup to perform vertical drop experiments to approximate wave slamming is presented and the necessary measuring equipment is described. The experimental results are firstly discussed in the time domain to understand what exactly is happening during the water entry and in what stage the maximum loads occur. The measurements learn that the time scale of the pressure and the force histories is considerably different. Secondly, the attention is focused on the peak values of the time plots. These impact pressures and impact forces are represented as function of the impact velocity. The pressure is hereby given for different positions along the circumference of the cylindrical surface. The experiments show that the impact pressure and force increase very fast with growing impact velocity, indicating that large loads accompany waves with large velocities. Wave slamming is thus an important design criterion for all kind of cylindrical structures when exposed to harsh sea conditions.

Copyright © 2012 by ASME
Topics: Stress , Cylinders , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In