0

Full Content is available to subscribers

Subscribe/Learn More  >

Breaking Wave Kinematics and Resulting Slamming Pressures on a Vertical Column

[+] Author Affiliations
Carl Trygve Stansberg, Kjetil Berget, Mateusz Graczyk, Chittiappa Muthanna, Csaba Pakozdi

MARINTEK, Trondheim, Norway

Paper No. OMAE2012-83929, pp. 679-689; 11 pages
doi:10.1115/OMAE2012-83929
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4488-5
  • Copyright © 2012 by ASME

abstract

A need has been identified to improve the knowledge about extreme slamming loads from breaking waves on vertical columns, such as offshore platforms and wind turbine foundations. Due to strongly nonlinear physical mechanisms and large statistical variability, more and improved experimental data are needed, as well as better qualified design procedures. In this paper, model test data and CFD simulations from a recent study with a fixed vertical column are compared and investigated in more detail. Selected individual extreme slamming events due to energetic breaking waves in 1:40 and 1:125 scaled model tests are presented and considered. Waves correspond approximately to extreme breaking wave occurrences in steep energetic sea states with 10-4 annual probability in the Norwegian sector.

Slamming pressures on the column wall are measured in time and space by means of a 7 × 7 pressure sensor array covering 19m2 (full scale). Significant spatial variations are observed. When spatially averaged over the array, the observed highest pressures are typically in the range 1MPa–3MPa (full scale), while smaller measuring areas give higher values. This compares roughly to levels found from recent results in the literature; although exact comparison is difficult due to statistical uncertainty issues. Experiences obtained from parallel CFD and PIV activities are also compared to the experiments, from which free-surface particle velocities up to 25m/s (full scale) are estimated in the worst cases. Finally, a simple empirical formula for a slamming coefficient depending on the actual pressure integration area is suggested based on the results.

Copyright © 2012 by ASME
Topics: Kinematics , Waves

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In