Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Dynamic Analysis of Jack-Up Platforms Exposed to Extreme Random Waves

[+] Author Affiliations
Jalal Mirzadehniasar, Mehrdad Kimiaei, Mark J. Cassidy

University of Western Australia, Perth, WA, Australia

Paper No. OMAE2012-83786, pp. 611-618; 8 pages
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4488-5
  • Copyright © 2012 by ASME


Deterministic waves with uniquely specified parameters remains widely used in the analysis of offshore platforms, even though the random nature of the sea-state is one of the main uncertainties in loading. The response of dynamically sensitive and highly redundant structures is significantly changed when random wave loading is considered. Therefore, to more confidently simulate wave loads, all of the randomness of water surface should be taken into account.

Load history also plays an important role in the nonlinear dynamic response of structures. Accordingly, an appropriate way to consider these effects is dynamic analysis of offshore platforms using random time-domain generation of the sea surface over a long period of time. However, in general, this method is very complex and time consuming. Constrained NewWave theory is an alternative method that can effectively simulate many hours of random time domain simulation for wave loading but in a more computationally efficient manner. It takes a NewWave — a deterministic wave of predetermined height that accounts for the spectral composition of the sea — and constrains it within a random background.

In this paper, both the singular NewWave and multiple constrained NewWaves are employed to simulate random sea-states in order to investigate the nonlinear dynamic response and collapse mechanisms of a jack-up platform subjected to extreme waves. Different assumptions of the behavior of the jack-up spudcan-soil interaction are considered.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In