0

Full Content is available to subscribers

Subscribe/Learn More  >

Dual Stiffness Approach for Polyester Mooring Line Analysis in Time Domain

[+] Author Affiliations
Arcandra Tahar, Djoni Sidarta

Horton Wison Deepwater, Inc., Houston, TX

Alex Ran

Offshore Tech, LLC, Houston, TX

Paper No. OMAE2012-83662, pp. 513-521; 9 pages
doi:10.1115/OMAE2012-83662
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4488-5
  • Copyright © 2012 by ASME

abstract

Polyester mooring lines have been used in the offshore industry since the late ’90s. With increasing oil exploration and production in deeper waters, using polyester lines provides greater benefit than using traditional steel wires and chains. Some advantages of using polyester include a reduction of mooring line weight, a reduction in vessel offset and a reduction in the dynamics of the line tensions. However, unlike steel, polyester lines exhibit axial stiffness characteristics that are nonlinear and vary with time and loading history.

Tahar (2001) developed a comprehensive theory and numerical tool to capture this behavior. The formulas allow relatively large elongation and nonlinear stress-strain relationships, as typically observed in polyester fibers. The mooring line dynamics are based on a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system.

Since this theory is computationally intensive, the benefits outweigh the costs less than they do for the practical approach recommended by API. Therefore, the fully coupled dynamic analysis tool CHARM3D has been modified to incorporate the API-recommended approach. Two axial stiffnesses (EA), post installation (static) stiffness and storm (dynamic) stiffness, have been convoluted into a dual stiffness to represent the total response of the floating platform in a single run. In the traditional method, the analyses are done twice, one run for each stiffness. Then, the extremes from each run are used as governing values for design. This paper presents the global performance comparison between the dual stiffness method and the traditional method. The effect of motions on SCR strength is also investigated using ABAQUS software.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In