0

Full Content is available to subscribers

Subscribe/Learn More  >

Fully Coupled Time Domain Modelling of 3D Floating Bodies and Mooring Systems in Regular and Irregular Sea States

[+] Author Affiliations
Kameswara S. Vepa, Diederik Van Nuffel, Wim Van Paepegem, Joris Degrieck

Ghent University, Zwijnaarde, Belgium

Paper No. OMAE2012-83464, pp. 401-406; 6 pages
doi:10.1115/OMAE2012-83464
From:
  • ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Rio de Janeiro, Brazil, July 1–6, 2012
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4488-5
  • Copyright © 2012 by ASME

abstract

Research on floating bodies like Wave Energy Converters (WECs) and Laser Imaging Detection And Ranging (LIDAR) systems has recently known a large growth. To study the minute details of the working model, it is important to study the effect of interactions between the waves, floating bodies and the mooring systems that are controlling the motion of the floating body. To achieve a more realistic numerical model in the time domain, a number of programs are linked together. The idea is to use the strength of each individual program for better results and also reduce the computational time.

This paper provides a solution in the direction of using a fully coupled time domain coupling code that controls the data flow between a fluid solver, a structural solver, and a kinematic system simulator.

Two- and three-dimensional fully coupled models are studied for calculation times and accuracy of results, and scaling is tested through parallelization on a large HPC cluster. The time step size of the whole model can be controlled by the user. Calculation times and memory requirements vary largely based on the factors like: domain size, SPH particle size, material model used for the floating body and the mooring system, complexity of the mechanical system inside the floating body. As a test case, a rigid body model is presented in this paper.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In