Full Content is available to subscribers

Subscribe/Learn More  >

Towards Building a Multiscale Mechanical Model for the Prediction of Acute Subdural Hematomas

[+] Author Affiliations
Mathieu Nierenberger, Daniel George, Daniel Baumgartner, Yves Rémond, Saïd Ahzi, Renée Wolfram, Jean-Luc Kahn

University of Strasbourg, Strasbourg, France

Rania Abdel Rahman

French University of Cairo, Chorouk, Egypt

Paper No. ESDA2012-82457, pp. 261-266; 6 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Advanced Manufacturing Processes; Biomedical Engineering; Multiscale Mechanics of Biological Tissues; Sciences, Engineering and Education; Multiphysics; Emerging Technologies for Inspection and Reverse Engineering; Advanced Materials and Tribology
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4487-8
  • Copyright © 2012 by ASME


Acute subdural hematoma (ASDH) is a potentially devastating, yet curable, extra axial fluid collection within the subdural space situated between the skull and the cortex. It is often due to rupture of bridging veins crossing this subdural space, caused by the brain-skull relative motion. To be able to predict ASDH, a numerical model reflecting the mechanical properties of vascular walls is attractive. With this in mind, a suitable approach consists in modeling the material microstructure at different scales. In a former work [1, 2], R. Abdel Rahman studied the mechanical properties of the bridging veins – superior sagittal sinus junction when a human head is submitted to shock. This work showed the apparition of ASDH over a given value of head rotational acceleration. But lacks in the knowledge of microstructure and of the constituents mechanical properties were put forward in understanding the relations between material mechanical behavior and the apparition of ASDH. Therefore we chose to adopt a multiscale approach to model ASDH apparition. In the current work, several experimental observations have been set up to obtain a sufficient knowledge of the vein wall microstructure which was imprecisely documented to date. Stained thin slices of human brain were observed by optical microscopy. In addition, microtomography was used to assess the collagen fibers orientations. These observations allowed the identification of the different scales needed for modeling the microstructure. Many authors [3–6] deal with the mechanical behavior of vascular walls and of their various constituents but none of them consider multiple scales for modeling [7]. The next step of this work consists in improving the predictive capabilities of the existing model by going down the scales and taking microstructure into account. This methodology enabled the introduction of only physical parameters into the model, which is essential for future predictive capabilities. Finally, a failure criterion for the bridging veins taking into account the different scales has been created and is still being improved. It allows the evaluation of specific disease influence like collagen damage due to physiology. Besides it provides a prediction tool for ASDH useable for optimization of various shock absorbers.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In