Full Content is available to subscribers

Subscribe/Learn More  >

An Extended Higher-Order Free Vibration Analysis of Composite Sandwich Beam With Viscoelastic Core

[+] Author Affiliations
Soroush Sadeghnejad, Mojtaba Sadighi, Abdolreza Ohadi Hamedani

Amirkabir University of Technology, Tehran, Iran

Paper No. ESDA2012-82686, pp. 75-82; 8 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME


Free vibration analysis of sandwich beam with a viscoelastic core based on the extended high-order sandwich panel theory approach is presented. The effects of transverse shear and core compressibility are of high importance in sandwich structures, having an influence on the entire structural behavior especially in vibrations. For applications involving stiffer cores, the high-order sandwich panel theory (HSAPT) cannot accurately predict the shear and axial stress distributions in the core. Thus, by using the “Extended High-Order Sandwich Panel Theory” (EHSAPT), the in-plane rigidity of the core is considered in addition to the compressibility of the core in the transverse direction. The novelty of this theory is that it allows for three generalized coordinates in the core (the axial and transverse displacements at the centroid of the core, and the rotation at the centroid of the core) instead of just one (mid-point transverse displacement) commonly adopted in other available theories. The mathematical formulation uses the Hamilton principle and includes derivation of the governing equations along with the appropriate boundary conditions. The formulation uses the classical thin plate theory for the face sheets and a two-dimensional elasticity theory or equivalent one for the core. In addition, Young modulus, rotational inertia, and kinetic energy of the core are considered and core is assumed as an orthotropic viscoelastic material. The analysis is applicable for any types of loading scheme, localized as well as distributed, and distinguish between loads applied at the upper or the lower face. The obtained results are compared with recent research published by the present authors which was done numerically by using FEM on viscoelastic sandwich beam and the corresponding results of other previous researches. The influence of material properties, face layup and geometry effect on natural frequencies of composite sandwich beams are investigated.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In