Full Content is available to subscribers

Subscribe/Learn More  >

Computer Support for the Identification of Solution Patterns for the Conceptual Design of Advanced Mechatronic Systems

[+] Author Affiliations
Roman Dumitrescu

Fraunhofer Institute for Production Technology IPT, Paderborn, Germany

Harald Anacker, Frank Bauer, Jürgen Gausemeier

University of Paderborn, Paderborn, Germany

Paper No. ESDA2012-82350, pp. 665-674; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME


Within the last years mechatronics as a self-contained discipline doubtlessly shaped the development of technical systems. Mechatronics means the close interaction of mechanics, electronics, control engineering and software engineering in order to achieve a better systems behavior. Due to the outstanding deployment of information and communication technologies, the functionality of mechatronic systems will go far beyond the known standards with the intention to increase their robustness, flexibility and reliability. The objective is to develop intelligent systems that react autonomously on changing environmental conditions and optimize their behavior during operation. The design of such advanced mechatronic systems is a challenge. Additionally to mechanical, electrical, control and software engineers also expertise from mathematical optimization, artificial intelligence and even cognitive science is necessary. This requires an effective and continuous cooperation and communication between developers from different domains during the whole development process. As a consequence a domain-spanning methodology is necessary in order to guarantee an effective work flow between the participating developers from various domains and their domain-specific methods, terminologies and solutions. For this purpose an ontology-based computer support will be presented, that facilitates the systems engineer by analyzing the functional system model and identifying convenient solutions. This includes the generation and storage of once proven design solutions as well as the search for the effective and domain-spanning reuse.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In