0

Full Content is available to subscribers

Subscribe/Learn More  >

Recycling of Carbon Fiber: Identification of Bases for a Synergy Between Recyclers and Designers

[+] Author Affiliations
Stéphane Pompidou, Marion Prinçaud, Dimitri Leray

Université de Bordeaux, Talence, France

Nicolas Perry

Arts et Métiers ParisTech, Talence, France

Paper No. ESDA2012-82106, pp. 551-560; 10 pages
doi:10.1115/ESDA2012-82106
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME

abstract

In order to decrease both energy consumption and CO2 emissions, the automotive, aeronautics and aerospace industries aim at making lighter vehicles. To achieve this, composite materials provide good opportunities, ensuring high material properties and free definition of geometry. As an example, for cold applications, the use of carbon fiber/thermoset composites is ever increasing, in spite of a high fiber price. But in a global and eco-friendly approach, the major limitation for their use remains their potential recyclability. Recycling a composite means having a recycling technology available, getting a dismantle solution and an access for the product, and disposing identification plus selection possibilities to the materials. Thus, carbon fibers recovery (i.e. recycling and re-processing) would both help design engineers to balance energy efficiency and cost, and open new opportunities for developing second-life composites, dedicated to the manufacture of medium or low loaded parts (non-structural in many cases).

A first section presents an overview of composite recycling possibilities. Indeed, environmentally and economically, composite incineration is not attractive (even with an energetic valorization), let-alone burying. Reuse and recycling thus remain the two most interesting options.

Aeronautics offers a high potential in terms of fiber deposit. In southwest France, composites recycling will increase in terms of quantity due to dismantling platforms Tarmac (dedicated to civil aircraft applications) and P2P (for the disassembly of ballistic weapons). In addition, from a technical point of view, and even if end-of-life solutions for composites still remain under development, solvolysis (i.e. water under supercritical conditions) already offers the opportunity to recover carbon fibers. The resulting recyclate retains up to 90 percent of the fiber’s mechanical properties.

A second part will explore the recycling to design issue (i.e. how recycling processes have to balance the previous aspects of the end-of-life proposal).

The recycler clearly becomes a new supplier in the carbon fiber lifecycle, by revalorizing wastes with alternatives to burning. Moreover, increasing carbon fiber shelf life reduces its product life impact. Finally, promoting carbon fiber end-of-life would ensure to link aeronautics, automotive, and leisure and sports industries; but one can create demand for recycled reinforcement, by packaging it in useful and attractive forms for those end-users (e.g. pseudo-continuous fiber, felt, strips, bands, patches, etc.).

These sections will be enlightened by several examples from collaborations between I2M and local industries.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In