0

Full Content is available to subscribers

Subscribe/Learn More  >

Functional Work Space Estimation of a Robot Using Forward Kinematics, D-H Parameters, and Shape Analyses

[+] Author Affiliations
R. J. Urbanic, A. Gudla

University of Windsor, Windsor, ON, Canada

Paper No. ESDA2012-83001, pp. 381-391; 11 pages
doi:10.1115/ESDA2012-83001
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME

abstract

The functional work space for a given orientation is a subset of the work envelope and is not intuitive to define for 6 axis industrial robots. A 2D boundary curve is derived for each desired end effector orientation and tool vector. This is done via a geometric analysis and using the Denavit-Hartenberg notation for the forward kinematic representation. The feasible region for all orientations is determined by the use of Boolean intersections. Disjoint regions may occur. Assessing these elements establishes the boundary limits for subsequent evaluation and optimization tasks. An ABB IRB 140 robot is used to highlight the methodology.

Copyright © 2012 by ASME
Topics: Kinematics , Robots , Shapes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In