Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Hand Exoskeleton for Space Extravehicular Activities

[+] Author Affiliations
Mohamad Mehdi Mousavi, Fai Chen Chen, Alain Favetto

Italian Institute of Technology, Turin, ItalyPolitecnico di Torino, Turin, Italy

Silvia Appendino, Francesco Pescarmona, Alessandro Battezzato

Italian Institute of Technology, Turin, Italy

Aurelio Somà

Politecnico di Torino, Turin, Italy

Paper No. ESDA2012-82681, pp. 335-342; 8 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME


Due to the bulk and stiffness of the astronauts’ glove, so called Extravehicular Activity (EVA) glove, many problems occur during their missions outside the spacecraft i.e. fatigue, dexterity reduction, decrease of possible EVA hours, etc. [1, 2]. To solve these problems a hand exoskeleton which can be embedded inside the astronauts’ glove has been proposed as a solution to help them to move their fingers more easily.

In this work all the steps that were taken towards the design of a preliminary version of the hand exoskeleton are explained in detail. The paper starts with a brief survey on related literature, followed by an analysis of three main research subjects for the design and realization of the hand exoskeleton: sensors, actuators and structure. In particular, different kinds of sensors and actuators are evaluated and advantages and disadvantages of each one are investigated. Then the main reasons to choose a specific type of sensor or actuator are described in detail. Regarding the structure, different possible solutions converging towards an optimal design for this application have been evaluated. Moreover, the use of some springs in the structure to simulate the stiffness of the EVA glove is proposed in order to be able to test the device in a condition similar to its final application. A brief description about the kinematic modeling and simulation of the structure in order to find the optimum location of the transmission cables and their tension forces is explained.

Copyright © 2012 by ASME
Topics: Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In