Full Content is available to subscribers

Subscribe/Learn More  >

Design and Optimization for a Cardiac Active Stabilizer Based on Planar Parallel Compliant Mechanisms

[+] Author Affiliations
L. Rubbert, P. Renaud, J. Gangloff

University of Strasbourg, Strasbourg, France

Paper No. ESDA2012-82278, pp. 235-244; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4486-1
  • Copyright © 2012 by ASME


Giving assistance to surgeons during beating heart procedures is currently a great challenge in medical robotics: a high level of safety is required while the beating heart yields high forces and dynamics. In this article, we investigate the design of an active cardiac stabilizer that will provide a motionless area of interest during the surgery. A device architecture is introduced that is based on planar parallel mechanisms. Such mechanisms are particularly interesting for their manufacturing simplicity and compactness. With the considered architecture, spherical compliant joints based on a planar structure need to be designed. Here we present the use of a 3-RRR spherical parallel mechanism. Its kinematic and stiffness analysis are performed using pseudo-rigid body modeling. An optimization of the mechanism is then achieved, using a modified ant colony optimization technique. The achievable performance of this type of compliant spherical joint is then discussed before concluding on the device adequacy with respect to the surgical requirements.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In