Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Natural Convection in a Mono-Span Greenhouse

[+] Author Affiliations
Sunita Kruger

University of Johannesburg, Johannesburg, Gauteng, South Africa

Leon Pretorius

University of Pretoria, Pretoria, Gauteng, South Africa

Paper No. ESDA2012-82365, pp. 91-100; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME


In this paper, the use of computational fluid dynamics is evaluated as a design tool to investigate the indoor climate of a confined greenhouse. The finite volume method using polyhedral cells is used to solve the governing mass, momentum and energy equations. Natural convection in a cavity corresponding to a mono-span venlo-type greenhouse is numerically investigated using Computational Fluid Dynamics. The CFD model is designed so as to simulate the climate above a plant canopy in an actual multi-span greenhouse heated by solar radiation. The aim of this paper is to investigate the influence of various design parameters such as pitch angle and roof asymmetry and on the velocity and temperature patterns inside a confined single span greenhouse heated from below. In the study reported in this paper a two-dimensional CFD model was generated for the mono-span venlo-type greenhouse, and a mesh sensitivity analysis was conducted to determine the mesh independence of the solution. Similar two-dimensional flow patterns were observed in the obtained CFD results as the experimental results reported by Lamrani et al [2]. The CFD model was then modified and used to explore the effect of roof pitch angle and roof asymmetry at floor level on the development of the flow and temperature patterns inside the cavity for various Rayleigh numbers. Results are presented in the form of vector and contour plots. It was found that considerable temperature and velocity gradients were observed in the centre of the greenhouse for each case in the first 40mm above the ground, as well as in the last 24mm close to the roof. Results also indicated that the Rayleigh number did not have a significant impact on the flow and temperature patterns inside the greenhouse, although roof angle and asymmetry did. The current results demonstrate the importance of CFD as a design tool in the case of greenhouse design.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In