Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Patients for Optimized Port Placement in Robot-Assisted Surgery

[+] Author Affiliations
Jose Bañez

Tufts University, Medford, MA

Stéphane Caro

Institut de Recherche en Communications et Cybernétique de Nantes, Nantes, France

Steven Schwaitzberg

Cambridge Health Alliance Hospitals, Cambridge, MA

Jean-Marc Classe

CHU Hôpital Nord Laënnec, Nantes, France

Caroline G. L. Cao

Tufts University, Medford, MAWright State University, Dayton, OH

Paper No. ESDA2012-82754, pp. 821-826; 6 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME


Robot-assisted laparoscopic surgery is gaining popularity because it has been shown to improve accuracy, reduce errors, and assists surgeons in performing more difficult procedures. However, positioning the ports and posing the robot arms to be able to perform the intervention while avoiding tool or arm collisions can be a lengthy and difficult process. The aim of this project was to design a decision aid for patient-specific, optimal port placement in pre-operative planning. This paper presents the analysis and design methods, including the building of separate patient and robot models. Based on a requirements analysis, a symbolic model of the robot was created based on the da Vinci Si Surgical System using the modified Denavit-Hartenberg (DH) parameters to define its work volume. Data from anthropometric tables and patients undergoing laparoscopic procedures were collected to create a library of realistic patient models. These two models, combined in a 3D interactive virtual environment, allow selection of suitable port locations, and a pose and position plan for the robotic arms with unrestricted access to the target area while avoiding collisions between instruments and other objects in the operating room. A simple and elegant protocol was then designed to collect actual patient data for validation of the models. Once validated, this model can be used for any robotic procedure within the abdomen.

Copyright © 2012 by ASME
Topics: Robots , Modeling , Surgery



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In