Full Content is available to subscribers

Subscribe/Learn More  >

Comparison Between Numerical and Experimental Gas Side Heat Transfer and Pressure Drop of a Tube Bank With Solid and Segmented Circular I-Fins

[+] Author Affiliations
Rene Hofmann

Josef Bertsch GmbH & Co. KG, Bludenz, Austria

Heimo Walter

Vienna University of Technology, Vienna, Austria

Paper No. ESDA2012-82713, pp. 709-720; 12 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME


In the present work, a comparison between numerical and experimental gas side heat transfer and pressure drop for a tube bundle with solid and segmented circular finned tubes in a staggered arrangement is investigated. For the numerical simulations a three dimensional model of the finned tube are applied. Renormalization group theory (RNG) based kε turbulence model was used to calculate the turbulent flow. Experiments have been carried out to validate the numerical predictions. The numerical results for the Nu-number and pressure drop coefficient show a good agreement with the data from measurement. A comparison between solid and segmented finned tubes from the global calculation of the Nu-numbers within the analyzed Re-range shows an enhancement by applying segmented finned tubes rather than finned tubes with solid fins.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In