Full Content is available to subscribers

Subscribe/Learn More  >

Structure Design of Energy Harvester for Supporting Paroxysmal Energy Collection

[+] Author Affiliations
Zhenhuan Zhu, S. Olutunde Oyadiji

University of Manchester, Manchester, UK

Paper No. ESDA2012-82851, pp. 583-588; 6 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME


This paper proposes a structure of energy harvester that is used to scavenge environment energy to power wireless sensor nodes. The ambient energy usually is from sunlight, wind, vibration, and so on. As the size of a sensor node is limited, the energy converted is normally small and has a prodigious random fluctuation. In order to improve the conversion efficiency of energy harvester, the paper proposes a power conversion circuit to collect rapidly paroxysmal energy generated by external environment. The circuit, as a power conditioner, bridges between energy transducers and the load of a wireless sensor node, and the power output of transducers are either AC or DC. The power conditioner implements AC-DC conversion, voltage adjusting and energy storage. A design model is developed to describe the dynamic behavior of the power conditioner under the different excitation from ambient energy sources, and energy conversion efficiency can be evaluated with the model. The proposed system architecture can be applied in the design of solar, wind or stochastic vibration energy harvesters.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In