0

Full Content is available to subscribers

Subscribe/Learn More  >

Static and Dynamic Analysis of Electrostatically Actuated Microcantilevers Using the Spectral Element Method

[+] Author Affiliations
P. V. Dileesh, S. S. Kulkarni, D. N. Pawaskar

Indian Institute of Technology, Bombay, Mumbai, India

Paper No. ESDA2012-82536, pp. 399-408; 10 pages
doi:10.1115/ESDA2012-82536
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME

abstract

The objective of this paper is to present the Spectral Element Method (SEM) as an accurate and efficient design tool for static and dynamic simulations of cantilever based MEMS devices. The microcantilever under consideration is modeled as a Timoshenko beam and discretized using the spectral element formulation that accounts for fringing field and the nonlinearity arising from the electrostatic driving force. The static analysis has been carried out using Picard’s iteration method and the static pull-in displacement and voltage have been calculated. An eigenvalue analysis of this beam is also carried out to determine its natural frequencies. In addition, the dynamics of this cantilever is studied using the explicit Newmark predictor-corrector method to generate the time history. In all cases, the results have been compared to the one-dimensional Finite Element Method and three-dimensional finite element method (implemented through the commercial package COMSOL Multiphysics) to examine the accuracy and computational speed of the proposed SEM. The results of the simulations were also compared to those obtained by experiments in the existing scientific literature.

These comparisons lead to the inference that the SEM is able to reproduce the static and dynamic response of the beam to a high degree of accuracy. It was also found that several numerical features inherent in the SEM lead to a significantly faster computation than the corresponding finite element method for equivalent degrees of freedom. This advantage was verified by using the SEM to carry out static and dynamic simulations of variable width microcantilevers.

We therefore propose that the SEM is a viable tool for the MEMS community to accurately and quickly determine the static and dynamic pull-in parameters, frequency eigenvalues, and static and dynamic behavior at the design stage.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In