0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid-Dynamic Analysis of Earthquake Shaking Table Hydraulic Circuit

[+] Author Affiliations
Massimo Cardone, Salvatore Strano

University of Naples “Federico II”, Naples, Italy

Paper No. ESDA2012-82422, pp. 343-350; 8 pages
doi:10.1115/ESDA2012-82422
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME

abstract

This paper presents a fluid-dynamic analysis of the hydraulic circuit of a shaking table for seismic tests; the model was developed adopting a commercial code. The aim of the study is to provide useful indications for the design of a new optimized control system. The model was developed taking into account all the components of the hydraulic circuit that is made of by the following main items: the axial piston pump, the pressure relief valve, the main control valve, the accumulators, the hydraulic cylinder with variable displacement and all the connecting pipes. Particular attention was given to the modelling of internal resistance of the hydraulic system, that can greatly affect the performance of the shaking table. It has also been accurately modelled the main valve dead zone to highlight its influence on the system dynamics. The results of numerical simulations obtained for different operational conditions are reported and compared with experimental data to show the validation and the performances of the developed model.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In