Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Pattern and Optimum Design of Sump Based on CFD

[+] Author Affiliations
Li Cheng, Chao Liu

Yangzhou University, Yangzhou, Jiangsu, China

Paper No. ESDA2012-82022, pp. 1-10; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME


The open sump is a typical inlet passage for small to middle-sized pumping station. It is important for the efficiency and safe operation of pumps that the open sump has an optimum design. The flow through the sump and into the pump is calculated using CFD. The incompressible N-S equations are solved by the finite volume method. The RNG k-ε turbulence model and the SIMPLEC algorithm for pressure-velocity coupling are used. Many different designs for the open sump are considered, the results of which are compared based on common criteria to evaluate the sump performance. Design values for the width, the depth of submergence and the bellmouth shape are derived.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In