0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Fluid-Structure Interactions in Tube Bundles With Multiphase-POD Reduced-Order Approach

[+] Author Affiliations
Marie Pomadere, Elisabeth Longatte

LaMSID – UMR CNRS/EDF, Clamart, France

Erwan Liberge, Aziz Hamdouni

Université de La Rochelle, La Rochelle, France

Jean-François Sigrist

DCNS Research, La Montagne, France

Paper No. ESDA2012-82462, pp. 137-146; 10 pages
doi:10.1115/ESDA2012-82462
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME

abstract

Fluid-Structure Interactions are present in a large number of systems of nuclear power plants and nuclear on-board stoke-holds. Particularly in steam generators, where tube bundles are submitted to cross-flow which can lead to structure vibrations. We know that numerical studies of such a complex mechanism is very costly, that is why we propose the use of reduced-order methods in order to reduce calculation times and to make easier parametric studies for such problems.

We use the multiphase-POD approach, initially proposed by Liberge (E. Liberge; POD-Galerkin Reduction Models for Fluid-Structure Interaction Problems, PhD Thesis, Universite de La Rochelle, 2008). This method is an adaptation of the classical POD approach to the case of a moving structure in a flow, considering the whole system (fluid and structure) as a multiphase domain. We are interested in the case of large displacements of a structure moving in a fluid, in order to observe the ability of the multiphase-POD technique to give a satisfying solution reconstruction. We obtain very interesting results for the case of a single circular cylinder in cross-flow (lock-in phenomenon). Then we present the application of the method to a case of confined cylinders in large displacements too. Here again, results are encouraging.

Finally, we propose to go further presenting a first step in parametric studies with POD-Galerkin approach. We only consider a flowing-fluid around a fixed structure and the Burgers’ equation. A future work will consist in applications to fluid-structure interactions.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In