0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of Turbulent Natural Convection in a Square Cavity for Application of CFD Modeling to Heat Transfer and Fluid Flow in a Data Center

[+] Author Affiliations
B. Durand-Estebe

I2M TREFLE, Pessac, FranceCap-Ingelec, St Jean d’Illac, France

C. Lebot, E. Arquis

I2M TREFLE, Pessac, France

Jn. Mancos

Cap-Ingelec, St Jean d’Illac, France

Paper No. ESDA2012-82418, pp. 111-127; 17 pages
doi:10.1115/ESDA2012-82418
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4485-4
  • Copyright © 2012 by ASME

abstract

Air flow management in a Data-center is a critical problem when designing HVAC (Heating, Ventilation and Air-Conditioning) system. Providing a sufficient cooling air volume at a designed temperature to all the informatics equipments, avoiding recirculation phenomenon, optimizing the installations in order to minimize the temperature difference between air exiting the CRAC (Computer Room Air Conditioning) and the air at the intake of the servers are parts of the multiples target that have to be reached in order to have the most efficient ventilation system.

In most of today’s data center, the IT (Information Technology) equipment dissipates between 12kW of heat for regular material, to up to 32kW for the recent high density server’s rack. Such a power release has to be cooled by efficient cooling system.

During this process the airflow temperature can increase by over 10K, and the air velocity can vary from 0.09m/s to more than 5m/s. Considering these large gradient of temperature and air speed several phenomenon must be taken into account, including turbulent natural convection.

To achieve these goals, we will use a CFD software to predict the airflow behaviour inside the Data-center. Therefore, the code must be able to accurately model turbulent airflow and heat transfers. We used the software (http/www.thetis.enscbp.fr) to simulate a 2D turbulent natural convection in a square cavity. The k-ε equations were solved to predict turbulent effects. The obtained results were compared to an experimental benchmark and are presented in the document.

In the last part of the paper we present the results of a 2D simulation representing a working server in a computer room cooled by a CRAC (Computer Room Air Conditioning) unit.

The airflow characteristics in the whole domain were determined using various dimensionless numbers in order to select the right physical and mathematical objects. Finally the results of a 3D simulation are presented and the cooling system performances are estimated.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In