Full Content is available to subscribers

Subscribe/Learn More  >

The Dynamics of a Bi-Stable Energy Harvester: Exploration via Slow-Fast Decomposition and Analytical Modeling

[+] Author Affiliations
Nadav Cohen, Izhak Bucher

Technion, Haifa, Israel

Paper No. ESDA2012-83013, pp. 853-859; 7 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


The paper discusses the advantages of the bi-stable energy harvester over linear oscillators in the low frequency excitation regime. When excited by low-frequency base motions, a bistable vibration-based energy harvester’s response is characterized by a combination of a slow, and a non-stationary fast component. By decomposing the response of the bi-stable system into fast and slow components, some new physical insights into the dynamical properties of the system are obtained. Properties such as mechanical frequency up-conversion, asymmetry in the bi-stable potential of the system and extraction of the backbone curve are explored. The proposed decomposition is demonstrated and explained via numerical and experimental results. A simple, approximate analytical model, for the bi-stable oscillator is proposed and its ability to detect migration towards different vibration regimes is illustrated. An expression for the power output of the harvester is derived from the analytical solution allowing us to tune the bi-stable potential towards optimum performance. The analytical model sheds light on the occurrences of bifurcations in the response of such nonlinear systems and on the optimal values of potential barrier vs. excitation levels.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In