Full Content is available to subscribers

Subscribe/Learn More  >

Optimized Control Strategy Based on the Driving Cycle Type for a Hydraulic Hybrid Bus

[+] Author Affiliations
Ali Safaei, Vahid Esfahanian, Mohammad Reza Ha’iri-Yazdi, Masood Masih Tehrani, Hassan Nehzati

University of Tehran, Tehran, Iran

Mohsen Esfahanian

Isfahan University of Technology, Isfahan, Iran

Paper No. ESDA2012-82673, pp. 819-827; 9 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


Using hybrid powertrains is an attractive idea to reduce the fuel consumption in vehicles. Control strategy is the most challenging subject in designing of a hybrid powertrain. In this paper, an optimized control strategy based on the driving cycle type designed for a hydraulic hybrid bus has been presented. Because of considering the type of the driving cycle, the proposed control strategy can be named as an intelligent one. In this controller, at first, four standard driving cycles have been defined as the reference clusters. Then the optimized control strategy for each cluster has been derived using a dynamic programming algorithm. In addition, several multi-layered perceptron networks are modeled in order to use the output of each optimized control strategy. After that a clustering method with a feature selection algorithm has been implemented to assign degree of similarity to each cluster for the unknown driving cycle. Finally, a linear combination of four optimized control strategy outputs has been used for generating final output of the intelligent control strategy. In this combination, each output is weighted by the corresponding degree of similarity. Here, the hydraulic hybrid bus model is a feed forward one and has been simulated using a compound driving cycle. The compound driving cycle consists of six distinct 100s long portions of the Nuremburg driving cycle. The simulation results show that by using the intelligent control strategy, the fuel consumption of the hybrid bus has been reduced by almost 12% in comparison with the results of a rule-based control strategy.

Copyright © 2012 by ASME
Topics: Cycles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In