Full Content is available to subscribers

Subscribe/Learn More  >

Control Algorithms of the Longitude Motion of the Powered Paraglider

[+] Author Affiliations
Yannick Aoustin

Université de Nantes, Nantes, France

Yuri Martynenko

Moscow Lomonosov State University, Moscow, Russia

Paper No. ESDA2012-82545, pp. 775-784; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


The design of remotely controlled and autonomous Unmanned Aerial Vehicles (UAVs) is an actual direction in modern aircraft development. A promising aircraft of this type is a powered paraglider (PPG). In this paper, a new mathematical model is suggested for the paraglider’s longitudinal motion aimed at the study of PPG dynamics and the synthesis of its automatic control. PPG under consideration is composed of a wing (canopy) and a load (gondola) with propelling unit. The PPG mechanical model is constructed as the system of two rigid bodies connected by an elastic joint with four degrees of freedom that executes a 2D motion in a vertical plane. The details of PPG’s motion characteristics including steady-states regimes and its stability have been studied. A nonlinear control law, based on the partial feedback linearization, has been designed for the thrust of PPG. Simulation results are analyzed. Simulation tests show that the internal dynamics are stable near the steady-state flight regime.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In