0

Full Content is available to subscribers

Subscribe/Learn More  >

Handling Localization in Damage Models With the Thick Level Set Approach (TLS)

[+] Author Affiliations
Nicolas Moës, Nicolas Chevaugeon

Ecole Centrale de Nantes, Nantes, France

Paul-Emile Bernard

Université Catholique de Louvain, Louvain-La-Neuve, Belgium

Claude Stolz

Ecole Polytechnique, Palaiseau, FranceLaMSID, Clamart, France

Paper No. ESDA2012-82711, pp. 67-70; 4 pages
doi:10.1115/ESDA2012-82711
From:
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME

abstract

In this paper, we discuss a new way to model damage growth in solids. A level set is used to separate the undamaged zone from the damaged zone. In the damaged zone, the damage variable is an explicit function of the level set. This function is a parameter of the model. Beyond a critical length, it is assumed that the material is totally damaged, thus allowing a straightforward transition to fracture. The damage growth is expressed as a level set propagation. The configurational force driving the damage front is non local in the sense that it averages information over the thickness in the wake of the front. Three important theoretical advantages of the proposed approach are as follows: (a) The zone for which the materials is fully damaged is located inside a clearly identified domain (given by an iso-level set). (b) The non-locality steps in gradually in the model. At initiation the model is fully local. At initiation, micro-cracks being absent no length scale should prevail. (c) It is straightforward to prove that dissipation is positive. A numerical experiment of the cracking of a multiply perforated plate is discussed.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In