Full Content is available to subscribers

Subscribe/Learn More  >

Task Based Pose Optimization of Modular Mobile Manipulators

[+] Author Affiliations
Liang He, Sean Phillips, Steven Waslander, William Melek

University of Waterloo, Waterloo, ON, Canada

Paper No. ESDA2012-83010, pp. 325-334; 10 pages
  • ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Computational Mechanics; Advanced Simulation-Based Engineering Sciences; Virtual and Augmented Reality; Applied Solid Mechanics and Material Processing; Dynamical Systems and Control
  • Nantes, France, July 2–4, 2012
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4484-7
  • Copyright © 2012 by ASME


We propose a task based pose optimization method for modular mobile manipulators. The modular mobile manipulators are designed and prototyped by researchers at University of Waterloo. The intended application of the modular mobile manipulator is to assist urban search and rescue in unstructured environments. A single mobile manipulator with limited capability cannot achieve complex tasks in this application. When several modular mobile manipulators are linked to one another, they can perform complex tasks through decentralized collaboration. The focus of this research is to develop and simulate a task based pose optimization algorithm for several mobile robots linked by dexterous arms. A genetic algorithm is a bio-inspired optimization technique that mimics the process of evolution. In nature, many living organisms, such as ants and birds use genetic algorithms to forge for food and achieve complex tasks. The advantages of the genetic algorithm are its simplicity and effectiveness. The proposed genetic algorithm in this research optimizes the manipulability measure of the onboard mechanical manipulator arms. To verify the proposed task based pose optimization algorithm, a formation of three mobile manipulators serially connected through their onboard mechanical manipulators is considered in this research. The control architecture is organized into a three level hierarchy. On the top level, a human operator sends guiding commands to the lead module in the formation through a wireless communication channel. The median level control aims at optimizing the manipulator pose. The base level control is established with the input-output linearization. To add realistic considerations into the simulation environment, fractal terrains are generated with the popular Diamond-Square algorithm. The inclination angle of each mobile manipulator on the terrain is estimated through a four-point terrain-matching algorithm. The simulation is completed in MATLAB. Repetitive simulations are pursued in this research to confirm the simplicity and effectiveness of our approach to control machines that interact with the natural environment. The simulation program established in this research serves as a test environment for the task based pose optimization of modular mobile manipulators. The major contributions of this research are the optimization algorithm and the novel hardware design for the specified tasks.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In