0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Assessment of the Integrity of Ductile Components

[+] Author Affiliations
Michael Daly, Andrew H. Sherry

The University of Manchester, Manchester, UK

John K. Sharples

Serco Assurance, Warrington, Cheshire, UK

Paper No. PVP2012-78774, pp. 887-892; 6 pages
doi:10.1115/PVP2012-78774
From:
  • ASME 2012 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Toronto, Ontario, Canada, July 15–19, 2012
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5505-8
  • Copyright © 2012 by ASME

abstract

Nuclear Reactor Pressure Vessels (RPV) are manufactured from medium strength low alloy ferritic steel, specifically selected for its high toughness and good weldability. The ability of the pressure vessel to resist crack growth is crucial given that it is one of the fundamental containment safety systems of the reactor. For most of their lifetime, the pressure vessel operates at sufficiently elevated temperatures to ensure the material is ductile. However, the development of ductile damage, in the form of voids, and the ability to predict the ductile crack growth in RPV materials requires further work.

The Gurson-Tvergaard-Needleman (GTN) model of void nucleation, growth and coalescence provides one tool for predicting ductile damage development. The model is normally calibrated against fracture toughness test data. However, recent work [1] has demonstrated the benefit of refining calibrations against measured void volume fractions generated from notched and pre-cracked specimen tests.

This paper described the measurement of void distributions below the fracture surface of a range of notched and pre-cracked specimens. The void distribution below the fracture surface is shown to be dependent upon the local stress triaxiality and plastic strain distribution. As a result, pre-cracked specimens show a greater concentration of voids close to the fracture surface, whilst notched tensile specimens show a lower volume fraction of voids close to the crack surface. In both specimen types, voids are observed to extend between 2.5 and 3.5 mm below the fracture surface.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In