Full Content is available to subscribers

Subscribe/Learn More  >

A Fully Implicit, Lower Bound, Multi-Axial Solution Strategy for Direct Ratchet Boundary Evaluation: Theoretical Development

[+] Author Affiliations
Alan Jappy, Donald Mackenzie, Haofeng Chen

University of Strathclyde, Glasgow, UK

Paper No. PVP2012-78314, pp. 577-585; 9 pages
  • ASME 2012 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Toronto, Ontario, Canada, July 15–19, 2012
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5502-7
  • Copyright © 2012 by ASME


Ensuring sufficient safety against ratchet is a fundamental requirement of pressure vessel design. Determining the ratchet boundary can however prove difficult when using a full elastic plastic finite element analysis and a number of direct methods have been proposed that overcome the difficulties associated with ratchet boundary evaluation. Here, a new approach based on fully implicit methods, similar to conventional elastic-plastic methods, is presented. The method utilizes a two-stage procedure. The first stage determines the cyclic stress state, which can include a varying residual stress component, by repeatedly converging on the solution for the different loads by superposition of elastic stress solutions using a modified elastic-plastic solution. The second stage calculates the constant loads which can be added to the steady cycle whilst ensuring the equivalent stresses remain below a modified yield strength. During stage 2 the modified yield strength used is updated throughout the analysis thus satisfying Melans Lower bound ratchet theorem. This is achieved through the same elastic plastic model as the first stage, using a modified radial return method. The methods that have been proposed here are shown to provide better agreement with upper bound ratchet method than the Hybrid method, however some limitations in this type of method have been identified and are discussed.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In