Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Initiation Toughness Under Small Scale Yielding (SSY) and J0.2BL vs. Q Fracture Locus Using Local Approach Methodologies in 304SS

[+] Author Affiliations
A. Wasylyk, A. H. Sherry

University of Manchester, Manchester, UK

J. K. Sharples

Serco Energy, Risley, UK

Paper No. PVP2012-78770, pp. 473-480; 8 pages
  • ASME 2012 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Toronto, Ontario, Canada, July 15–19, 2012
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5502-7
  • Copyright © 2012 by ASME


Structural integrity assessments of structures containing defects require valid fracture toughness properties as defined in national and international test standards. However, for some materials and component geometries, the development of valid toughness values — particularly for ductile fracture — is difficult since sufficiently large specimens cannot be machined. As a consequence, the validity of fracture toughness properties is limited by the development of plasticity ahead of the crack tip and the deviation of crack tip conditions at failure from small scale yielding. This paper described the use of local approach models, calibrated against invalid test data, to define initiation toughness in 304 stainless steel pipe material. Three fracture toughness geometries were tested, shallow cracked single edge cracked specimens tested under three point bending, deep cracked single edge cracked specimens tested under three point bending, and deep cracked single edge cracked specimen tested under tension. Initiation toughness and J-Resistance curves were defined for each specimen using the multi-specimen technique. All initiation toughness values measured were above the specimen validity limits. The fracture conditions at initiation were analysed using three local approach models: the Generalised Rice & Tracey, High Constraint Rice & Tracey and the Work of Fracture. The adequacy of local approaches to define the fracture conditions under large strains in 304 stainless steels was demonstrated. A modified boundary layer analysis combined with the local approach models was used to predict the “valid” initiation toughness under small scale yielding condition in this material by defining a J-Q fracture locus. The analytically derived fracture locus was compared to the J-Q values obtained experimentally and shown to be consistent.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In