Full Content is available to subscribers

Subscribe/Learn More  >

Cleavage Crack Propagation and Arrest in a Nuclear Pressure Vessel Steel

[+] Author Affiliations
Amaury Bousquet, Stéphane Marie

CEA-Saclay, Gif-sur-Yvette, France

Philippe Bompard

Ecole Centrale Paris, Châtenay-Malabry, France

Paper No. PVP2012-78174, pp. 349-358; 10 pages
  • ASME 2012 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Toronto, Ontario, Canada, July 15–19, 2012
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5502-7
  • Copyright © 2012 by ASME


The integrity assessment of Reactor Pressure Vessels, mainly based on crack initiation, can be completed by studying crack propagation and arrest. Whereas engineering approaches do not take into account dynamic effects, these effects are important in unstable cleavage crack propagation, arrest and possible propagation re-initiation events. This study deals with physical mechanisms of cleavage crack propagation and numerical computations related to brittle fracture in the framework of local approach to fracture.

Experiments were carried out on thin CT 25 specimens made of 16MND5 PWR vessel steel at five temperatures (−150°C, −125°C, −100°C, −75°C, −50°C). Two kinds of crack path, straight or branching path, were observed. Branching cracks appear for the highest critical loadings at initiation, that increase the elastic stored energy and the effect of plasticity. The elastic-viscoplastic behavior of the ferritic steel was studied up to a strain rate of 104 s−1 and taken into account in the numerical simulations. The eXtended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion. The different physical micro-mechanisms, involved in cleavage fracture, were examined by the means of SEM fracture surface analyses at different temperatures and strain rates for the two kinds of crack path.

The links of the critical fracture stress with both temperature and strain rate for straight crack path as well as analyses of branching crack phenomena were considered by the means of Scanning Electron Microscopy (SEM) fracture surface analyses, 3D quantitative optical microscopy and FE computations in order to aim at a robust physical justification of the propagation model which has already been developed at CEA in the frame of the B. Prabel PhD.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In