Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Fiber Orientation Along the Length of Complex Composite Structures Subjected to Internal Pressure and Axial Loading

[+] Author Affiliations
Rifat Hossain, Pierre Mertiny, Jason Carey

University of Alberta, Edmonton, AB, Canada

Paper No. PVP2012-78237, pp. 29-34; 6 pages
  • ASME 2012 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Toronto, Ontario, Canada, July 15–19, 2012
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5502-7
  • Copyright © 2012 by ASME


Axially symmetric fiber-reinforced polymer composite structures such as pressure vessels and piping are being widely used in different industrial applications where combined loading conditions may be applied. It is imperative to determine a suitable fiber angle, or a distribution of fiber angles, along the longitudinal direction of the structure in order to achieve best performance in terms of mechanical behavior and strength for structures subjected to combined loadings. To this end, a theoretical study was conducted providing the relationship between the fiber orientation and the loading conditions applied to a composite structure. The aim of this study is to determine the fiber angle variation along the length of an axially symmetric composite structure with variable cross-section considering different ratios of axial loading and internal pressure. As an initial step, netting analysis design theory was implemented in the present study.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In