0

Full Content is available to subscribers

Subscribe/Learn More  >

The Decompression Behaviour of Carbon Dioxide in the Dense Phase

[+] Author Affiliations
Andrew Cosham

Atkins, Newcastle upon Tyne, UK

David G. Jones

Pipeline Integrity Engineers, Newcastle upon Tyne, UK

Keith Armstrong, Daniel Allason

GL Noble Denton, Spadeadam Test Site, UK

Julian Barnett

National Grid, Warwick, UK

Paper No. IPC2012-90461, pp. 447-464; 18 pages
doi:10.1115/IPC2012-90461
From:
  • 2012 9th International Pipeline Conference
  • Volume 3: Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4514-1
  • Copyright © 2012 by ASME

abstract

Pipelines can be expected to play a significant role in the transportation infrastructure required for the successful implementation of carbon capture and storage (CCS). National Grid is undertaking a research and development programme to support the development of a safety justification for the transportation of carbon dioxide (CO2) by pipeline in the United Kingdom.

The ‘typical’ CO2 pipeline is designed to operate at high pressure in the ‘dense’ phase. Shock tube tests were conducted in the early 1980s to investigate the decompression behaviour of pure CO2, but, until recently, there have been no tests with CO2-rich mixtures.

National Grid have undertaken a programme of shock tube tests on CO2 and CO2-rich mixtures in order to understand the decompression behaviour in the gaseous phase and the liquid (or dense) phase. An understanding of the decompression behaviour is required in order to predict the toughness required to arrest a running ductile fracture.

The test programme consisted of three (3) commissioning tests, three (3) test with natural gas, fourteen (14) tests with CO2 and CO2-rich mixtures in the gaseous phase, and fourteen (14) tests with CO2 and CO2-rich mixtures in the liquid (or dense) phase. The shock tube tests in the liquid (dense) phase are the subject under consideration here.

Firstly, the design of the shock tube test rig is summarised. Then the test programme is described. Finally, the results of the dense phase tests are presented, and the observed decompression behaviour is compared with that predicted using a simple (isentropic) decompression model. Reference is also made to the more complicated (non-isentropic) decompression models. The differences between decompression through the gaseous and liquid phases are highlighted.

It is shown that there is reasonable agreement between the observed and predicted decompression curves.

The decompression behaviour of CO2 and CO2-rich mixtures in the liquid (dense) phase is very different to that of lean or rich natural gas, or CO2 in the gaseous phase. The plateau in the decompression curve is long. The following trends (which are the opposite of those observed in the gaseous phase) can be identified in experiment and theory:

• Increasing the initial temperature will increase the arrest toughness.

• Decreasing the initial pressure will increase the arrest toughness.

• The addition of other components such as hydrogen, oxygen, nitrogen or methane will increase the arrest toughness.

Copyright © 2012 by ASME
Topics: Carbon dioxide

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In