Full Content is available to subscribers

Subscribe/Learn More  >

Full Scale Cyclic Fatigue Testing of Dented Pipelines and Development of a Validated Dented Pipe Finite Element Model

[+] Author Affiliations
Sanjay Tiku, Vlado Semiga, Aaron Dinovitzer

BMT Fleet Technology Ltd., Kanata, ON, Canada

Geoff Vignal

Enbridge Pipelines Inc., Edmonton, AB, Canada

Paper No. IPC2012-90427, pp. 693-702; 10 pages
  • 2012 9th International Pipeline Conference
  • Volume 2: Pipeline Integrity Management
  • Calgary, Alberta, Canada, September 24–28, 2012
  • Conference Sponsors: International Petroleum Technology Institute, Pipeline Division
  • ISBN: 978-0-7918-4513-4
  • Copyright © 2012 by ASME


Dents in buried pipelines can occur due to a number of potential causes; the pipe resting on rock, third party machinery strike, rock strikes during backfilling, amongst others. The long-term integrity of a dented pipeline segment is a complex function of a variety of parameters, including pipe geometry, indenter shape, dent depth, indenter support, pressure history at and following indentation. In order to estimate the safe remaining operational life of a dented pipeline, all of these factors must be accounted for in the analysis.

The paper discusses the full-scale dent testing being completed to support the development of pipeline integrity management criteria and is a continuation of the work discussed in previous IPC papers [1,2]. The material and structural response of the pipe test segments during dent formation and pressure loading has been recorded to support numerical model development. The full scale experimental testing is being completed for pipe test specimens in the unrestrained and restrained condition using different indentation depths and indenter sizes. The dents are pressure cycled until fatigue failure in the dent. This paper presents typical data recorded during trial including indentation load/displacement curves, applied pressures, strain gauges along the axial and circumferential centerlines, as well as dent profiles.

The use of the full-scale mechanical damage test data described in this paper in calibrating and validating a finite element model based integrity assessment model is outlined. The details of the integrity assessment model are described along with the level of agreement of the finite element model with the full scale trial results. Current and future applications of the integrity assessment model are described along with recommendations for further development and testing to support pipeline integrity management.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In